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 REPORTS

 effects between duplicates. Although in some
 cases, this interference can be exploited, for
 example, by using it to repress gene expres-
 sion (5, 23), we propose that a more common
 outcome is the minimization of this interfer-

 ence in gene duplicates that persist over evo-
 lutionary time. Whether such minimization is
 generally accompanied by an increase in regu-
 latory complexity, as seen here, remains to be
 determined.
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 Surviving in a Marine Desert: The
 Sponge Loop Retains Resources
 Within Coral Reefs

 Jasper M. de Goeij,1* Dick van Oevelen,2 Mark ]. A. Vermeij,3 Ronald Osinga,4
 Jack J. Middelburg,5 Anton F. P. M. de Goeij,6 Wim Admiraal1

 Ever since Darwin's early descriptions of coral reefs, scientists have debated how one of the
 world's most productive and diverse ecosystems can thrive in the marine equivalent of a desert.
 It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced
 on reefs, is transferred to higher trophic levels. Here we show that sponges make DOM available to
 fauna by rapidly expelling filter cells as detritus that is subsequently consumed by reef fauna.
 This "sponge loop" was confirmed in aquarium and in situ food web experiments, using 13C- and
 15N-enriched DOM. The DOM-sponge-fauna pathway explains why biological hot spots such as
 coral reefs persist in oligotrophic seas - the reef's paradox - and has implications for reef
 ecosystem functioning and conservation strategies.

 Coral productive seas, reefs but nevertheless thrive ecosystems in oligotrophic belong on Earth to the tropical (1-3). most
 seas, but nevertheless belong to the most
 productive ecosystems on Earth (1-3).

 Efficient retention and recycling of carbon and
 nutrients causes the net production of reefs to
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 be close to zero, despite high gross primary pro-
 duction (4). Reef primary producers such as
 corals and algae release up to 50% of their
 fixed carbon (5, 6 ), of which up to 80% im-
 mediately dissolves in seawater (7). This shunt
 into the dissolved organic matter (DOM) pool
 represents a major flow of energy and nutrients
 on coral reefs (7). In the open ocean, microbes
 enable the transfer of DOM to higher trophic
 levels through the well-established microbial
 loop (8). Studies on coral reefs have therefore
 also initially focused on microbes in reef waters
 and adjacent permeable sediments to understand
 the fate of DOM in these systems (7, 9-11).
 However, uptake rates by bacterioplankton, in
 the sense of the microbial loop, are largely in-
 sufficient to explain the observed DOM removal
 on Caribbean and Indo-Pacific reefs (12). It there-
 fore remains unclear how the largest source of

 energy and nutrients on reefs is transferred to
 higher trophic levels.

 Cryptic habitats, for example, the coral reef's
 crevices and cavities, are identified as major
 sinks of DOM on Caribbean and Indo-Pacific

 reefs (12). These habitats cover up to two-thirds
 of the reef's volume, and the biomass of cryp-
 tic organisms can exceed that on the open reef
 (13.14). DOM removal rates in cryptic habitats
 on Caribbean reefs (12) are comparable to the
 average gross primary production rates of the
 entire coral reef ecosystem (2). DOM removal
 rates on Indo-Pacific reefs are lower (12) but
 still account for up to 46% of the average gross
 reef productivity. Sponges are primarily respon-
 sible for total DOM uptake and remove the
 same amount of DOM from the water column in

 30 min as free-living bacteria take up in 30 days
 (12. 15). Therefore, sponges retain organic mat-
 ter within the reef community and thereby pre-
 vent energy and nutrient losses to the open ocean.

 Surprisingly however, sponges respire only 42%
 of the carbon taken up from the surrounding
 water (75, 16). Assuming that the remaining 58%
 is used for growth, a biomass increase of 38% of
 body carbon per day (more than a doubling of
 biomass every 3 days) would be expected (16). In
 reality, however, the net growth rate of sponges is

 near zero (75, 16), implying high losses of sponge
 biomass through a rapid tissue turnover.

 A rapid turnover and extensive loss of sponge
 cells to the surrounding water has been shown
 for the sponge Halisarca caerulea (17). The
 sponge's filter cells (choanocytes) divide every
 5 to 6 hours, representing the fastest cell cycle
 found in any multicellular organism to date (17).
 This rapid cell production is counterbalanced by
 massive shedding of old choanocytes as partic-
 ulate organic matter (POM or detritus) into the
 water column (77). Massive shedding of POM is
 also observed in other tropical sponges (18, 19).
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 Fig. 1. Fate of DOM tracer
 3C (red bars) and (blue
 bars) through sponge-
 driven DOM transfer in flow

 chamber experiments. (A)
 Uptake of tracer DOM (DO^C
 and DO^N; micromoles of
 tracer per millimole of sponge

 C or N ± SD; n = 4 speci-
 mens) by the sponge species
 Hab'sarca caerulea (He), Hal-

 iclona implexiformis (Hi ),
 ChondriUa caribensis (Cc),

 and Scopaäna metderí (Sr).
 The uptake of DO^C by
 sponges is further specified
 in tissue assimilation (dark

 red bars) and respiration
 (light red bars). (B) Produc-
 tion of detritus (PO^C and

 PO^N; micromoles of tracer

 per millimole of sponge C or

 N ± SD; n = 4 specimens)
 by the sponges HC, HI, CC,

 and SR. (0 Uptake of
 sponge-derived tracer detritus

 (PO^C and PO^N; miao-
 moles of tracer per millimole

 of faunal C or N ± SD) by
 detritivores (n = 28 speci-
 mens) picked from six cores
 of reef sediment; three cores

 were supplemented with hermit crabs and snails.

 REPORTS I
 This suggests that sponges use the majority of
 incorporated carbon to rejuvenate their filter sys-

 tem and maintain a high cell turnover.
 We hypothesize here that shed sponge cells

 (detritus) are subsequently ingested by particle-
 feeding organisms (detritivores). Sponges thereby
 make the energy and nutrients stored in the DOM

 pool available to organisms at higher trophic lev-
 els that would otherwise be unable to capitalize
 on this resource. Because small detritivores (such
 as crustaceans and polychaetes) are themselves
 fed upon by larger animals higher in the food

 web, sponges are at the base of a sponge loop that
 ultimately recycles energy and nutrients back into

 the ecosystem in a similar way as the microbial
 loop does in the open ocean.

 To study the proposed DOM-sponge-detritus
 feedback loop on coral reefs, we tested three key
 predictions of this hypothesis: (i) sponges take up
 DOM, (ii) sponges convert DOM into detritus,
 and (iii) sponge-derived detritus is taken up by
 detritivores. These three predictions were first
 tested in flow chambers in a controlled running-
 seawater aquarium setup (fig. SI) using 13C- and

 15N-enriched DOM, extracted from the cosmo-
 politan marine diatom Phaeodactylum tricornutum ,

 as a food web tracer (20).
 All three key elements were confirmed ex-

 perimentally (Fig. 1). Four common reef sponge
 species showed uptake of dissolved organic car-
 bon (D013C) and nitrogen (D015N) (Fig. 1A).
 All four species subsequently produced 13C- and
 1 ^-enriched detritus (Fig. IB). The four sponge
 species converted 1 1 to 24% of the assimilated
 D013C into detritus (P013C) and 18 to 36% of
 the D015N into P015N within 3 hours (Fig. 1, A
 and B). Control incubations showed that detritus
 production without sponges was less than 4%
 of the detritus production in incubations with
 sponges. Detritivores subsequently fed on the
 labeled sponge-derived detritus (Fig. 1C). Iso-
 topically enriched detritus, collected from speci-
 mens of the four tested sponge species (fig. S2)
 that were repeatedly fed with 13C- and 15N-enriched

 DOM (20), was added to six cores containing cav-
 ity sediments with residing fauna and, in three out
 of six cores, motile fauna were added (hermit
 crabs and snails) (fig. SI). Within 6 hours, sponge
 detritus was incorporated by 17 out of 28 (13C) and

 23 out of 28 (15N) specimens of detritivores.
 After experimental confirmation of a sponge

 loop in flow chambers, the question arose wheth-
 er this newly found pathway could actually be
 identified in a complex coral reef environment
 Therefore, the water exchange of two in situ
 cryptic reef cavities (75 and 100 liters) with the
 surrounding reef water was temporarily restricted

 (12, 20), and 13C- and 15N-enriched DOM was
 injected into the enclosed cavity at the start of
 two consecutive incubation periods of 3 hours
 (fig. S3). Once we restored the water exchange
 between the water column and the cavities, the

 presence and fate of labeled DOM were ana-
 lyzed over the subsequent 45 hours within the
 main cavity compartments; that is, sponges,
 sponge-derived detritus, surface sediment, bac-
 terioplankton, nonsponge filter feeders, and mo-
 tile fauna such as hermit crabs and snails (20).
 The relative abundance of 13C and 15N in these

 compartments over time provided qualitative

 Fig. 2. In situ sponge- Sponc
 driven transfer of tracer 50

 DOM (red line, 13C; blue ^ J t=0-J
 line, ^N) in coral reef cav- "f ^ after
 ities after a temporary ^ 30 ||- incub
 6-hour closure (gray shad- z* 20

 ing) and the subsequent < 1Q
 45 hours. The mean above- ^ ' ' "l4~
 background isotope tracer incor- 0 ^ * ' '
 poration^OcandAS^oc) 0 10 2°. 30
 of two cavities is shown for the com- ime *
 partments (A) sponges, (B) sponge-

 derived detritus, and (0 detritivores; _
 that is, nonsponge filter feeders (solid _ 15N
 line) and motile fauna (dashed line). For guidance,
 the interval of peak tracer incorporation is high-
 lighted for each compartment, t, time; h, hours.
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 Fig. 3. A simplified scheme of dominant pathways (millimoles of C m~2 day-1) of organic carbon
 transfer on coral reefs in the pelagic (blue), benthic reef (green), and sediment (yellow) eco-
 system compartments. The proposed sponge loop (red arrow) is shown in addition to the classical mi-
 crobial loop. GPP, gross primary production. *(2), t (5, 6), t(7), ¡(12), §(11, 12) HÜ2); see (20) for details.
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 evidence in support of our proposed pathway of
 sponge-driven DOM transfer (Fig. 2). After the
 introduction of labeled DOM to coral cavities, the

 uptake of tracer 13C and 15N was first observed
 in sponges (first prediction: DOM-sponge; mean
 sponge A513C 27 per mil (%o) and AÔ15N 1 1 1%0;

 Fig. 2A) immediately after the 6-hour incubation
 period. Between 12 and 24 hours after the in-
 cubation, the relative isotope abundance peaked
 in sponge-derived detritus (second prediction:
 sponge-detritus; mean detritus ÀÔ13C 24%o and
 ÀÔ15N 261%o; Fig. 2B). The sponge-derived de-
 tritus was finally transferred into motile fauna
 and nonsponge filter feeders after 45 hours (third

 prediction: detritus-higher trophic levels; steady
 increase to a detritivore Àô13C 3 to 4%o and A815N

 12 to 17%o; Fig. 2C). The 13C:15N ratio of sponge-
 derived detritus was lower than the 13C:15N of

 the sponges (Fig. 2, A and B), indicating that
 the detritus was relatively enriched in N. The
 DOM-derived A513C or A815N in the surface

 sediment or the bacterioplankton was generally
 lower than 2%o, indicating limited uptake by
 these compartments.

 The seemingly paradoxical observation that
 productive ecosystems such as coral reefs thrive
 in nutrient-poor waters can only be explained
 through processes ensuring efficient capture, re-
 tention, and recycling of energy and nutrients.
 Such tight recycling mechanisms involve micro-
 bial processing of coral- and algal-derived DOM
 in the water column and permeable reef sands
 (7, 11). Here we show that, in addition to the
 transfer of DOM via bacteria to fauna (8), sponges
 transform the majority of DOM into particulate
 detritus, a pathway that has hitherto not been
 recognized (Fig. 3). The underlying mechanisms
 of DOM uptake and rapid cell turnover in sponges
 are not yet fully understood. Sponges form close
 associations with microorganisms, forming so-
 called holobionts, and both sponge cells and mi-
 crobes can assimilate DOM (16), although their
 relative contributions remain largely unknown.
 The sponge loop nevertheless greatly enhances
 our growing understanding of the efficiency that

 typifies coral reefs, thus supporting reef life, in-
 creasing biodiversity (21, 22,) and maintaining
 high productivity. Sponges not only recycle the
 energy retained in DOM but also provide reef
 fauna with a source of nutrients (such as N),
 thereby fertilizing the coral reef ecosystem. The
 efficient and fast uptake, retention, and release
 (23) of nutrients within the originally oligotrophic

 ecosystem by sponges may also catalyze nutrient-
 induced shifts in the coral-algal-microbe com-
 munity after eutrophication, often associated
 with coral reef degradation (24, 25). Top-down-
 controlled shifts from coral- to sponge-dominated

 reefs have been predicted (26) and recorded in
 the Caribbean (27, 28), but still sponges are rarely
 considered in analyses of alternative stable states
 on coral reefs. Other oligotrophic ecosystems where

 sponges are abundant, such as deep-sea cold-water
 coral reefs and temperate Mediterranean reefs,
 may also sustain the functioning of a sponge loop.
 Deep-sea sponges contribute substantially to the
 respiration of cold-water reef communities (29)
 and produce large amounts of detritus (30). Medi-
 terranean reefs are dominated by (cryptic) sponges,

 of which several abundant species are found to
 take up DOM (31). Although this study shows
 the presence of the sponge loop mainly qualita-
 tively, DOM turnover by sponges (15) approaches
 the daily gross primary production of the entire
 reef ecosystem (2, 4), suggesting that this ener-
 getic pathway is of great ecological importance
 (Fig. 3). Recognition of the key role of sponges in
 coral reefs has, consequently, implications for
 studies on ecosystem services and conservation
 strategies in ecosystems where sponges are a
 ubiquitous component.
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