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A B S T R A C T

Ammonium (NH4
+) and ammonia (NH3) in aquatic ecosystems are of great interest to environmental

scientists because they can be used to study the nitrogen cycle and as water quality indicators. Analytical
separation methods developed in recent decades have been used widely to determine NH4

+ and NH3 in
aqueous solutions. This review presents an overview of state-of-the-art separation methods and
analytical techniques for determining NH3/NH4

+ in natural water, including chromatographic methods,
electrophoretic methods, extraction methods, membrane-based gas diffusion methods, membraneless
gas diffusion methods, passive sampling methods, and paper-based analytical methods. Common
detection techniques that can be used in conjunction with particular separation methods are described,
phase-transfer strategies (liquid-liquid, liquid-solid, liquid-membrane-liquid, and liquid-gas-liquid
methods) are highlighted, and the strengths and weaknesses of the separation methods are discussed.
The outlook, challenges, and expected future developments in the field of separation methods for
determining NH4

+ and NH3 in natural water are presented.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Determining ammonium (NH4
+) and ammonia (NH3) concen-

trations to allow the spatial distributions of NH4
+ and NH3 in

aquatic ecosystems to be studied is important to environmental
scientists. Information obtained by analyzing NH4

+/NH3 can be
used to evaluate the environmental quality of an aquatic
ecosystem and to study the nitrogen biogeochemical cycle [1].
Large temporal and spatial NH4

+/NH3 datasets could facilitate
aquatic ecosystem protection, high quality drinking water
supplies, and water quality trend predictions [2,3].

NH3 and the positively charged form NH4
+ are the most reduced

natural nitrogen species. The pH of water controls the NH4
+/NH3

ratio. The NH3 fractions (dNH3) and NH4
+ fractions (dNH4) at

equilibrium at different pH values are shown in Fig. 1. Unpolluted
seawater is generally at pH 7.5–8.4 [4], but freshwater generally
has a wider pH range. The US Environmental Protection Agency has
published an aquatic life criterion of pH 6.5–9 [5]. NH4

+ (pKa 9.25
at 25 �C) is dominant in most natural water, so NH4

+ is generally
used here to mean total NH4

+ and NH3 in water.
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NH4
+ concentrations in natural water can vary over several

orders of magnitude, from several to hundreds of nanomoles per
liter. NH4

+ in surface water is transformed into other forms of
nitrogen through biological and chemical processes. NH4

+ is an
important source of nitrogen for aquatic organisms [1,6]. NH4

+

concentrations in unpolluted surface water can reach several
millimoles per liter [7]. In some cases (e.g., in the open ocean),
NH4

+ concentrations in water are as low as several nanomoles per
liter [8,9]. NH4

+ concentrations are often high (up to several
hundred millimoles per liter) in municipal and industrial
wastewater [10]. It is difficult to determine a wide range of
NH4

+ concentrations in water using a single method, so multiple
approaches are generally used.

Typical methods that are used to separate NH4
+ and NH3 from

matrix components are shown in Fig.1. NH4
+ is dominant at low pH

values and can be separated from matrix components using ion-
exchange methods. However, NH3, which is volatile and can diffuse
from the sample, is dominant at high pH values. Typical separation
methods that are used to determine NH4

+ are shown in detail in
Fig. 2. The methods can be divided into three types, (1) direct
measurement methods using ion chromatography (IC) or capillary
electrophoresis, (2) methods in which NH4

+ is derivatized to give a
larger molecule that strongly absorbs UV/visible light or emits
fluoresces and is extracted from the sample before being
determined by UV/visible or fluorescence spectroscopy, and (3)
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Fig. 1. Fractions of NH4
+ species as a function for pH and typical separation

pathways for the determination.

Fig. 2. Overview of the typical separation methods for the determination of NH4
+

and NH3. A square frame indicates a detection method: pH, pH meter; UV–vis, UV–
vis spectrophotometry; FL, fluorometry; Cam, digital camera; CD, conductometry;
C4D, capactively copuled contactless conductivity detection; sup-CD, suppressed
ion chromatography and conductivity detection; MS, mass spectrometry. GC, gas
chromatography; HPLC, high performance liquid chromatography; LLE, liquid-
liquid extraction; SPE, solid phase extraction.
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methods in which NH3 is diffused into the gas phase or through a
membrane and then trapped and detected.

Methods that are often used to determine NH4
+ and NH3 are

also shown in Fig. 2. Conductometry, which is used after IC,
requires a suppressor to be used before the detector to decrease
background conductance. A method called contactless conductivi-
ty detection or capacitively coupled contactless conductivity
detection (C4D) is often used with capillary electrophoresis. In
this method, the electrodes are not in contact with the solution.
This avoids the electrodes corroding and the results being affected
by the high voltages used. UV/visible spectrometry (UV–vis),
fluorometry, conductometry, pH meters, and even digital cameras
on mobile phones have been used with non-chromatographic
separation methods. The detection methods are discussed in more
detail below.

Determining NH4
+ in water after using a separation method

offers many advantages over determining NH4
+ in water without

using a separation method. Some advantages are described here.
(1) Other ionic compounds can be determined at the same time as
NH4

+ to give a more complete understanding of the sample. (2)
Chromatographic separation allows NH4

+ to be determined
separately from other amine compounds, which is difficult to
achieve using non-chromatographic methods. (3) Converting NH4

+

into NH3 and then transferring the NH3 to another phase allows
interferences from other compounds to be eliminated, meaning
simple universal detection methods such as a pH meter or
conductometry can be used. This makes it possible to make the
method portable for field use. (4) Phase separation or extraction
involves enrichment, which means the method will be sensitive.
(5) Separation and enrichment are key processes allowing nitrogen
stable isotopes in NH4

+ to be studied [11].
Several reviews of NH4

+ analysis methods have been published
in the last 15 y. In 2006, Molins-Legua et al. [12] compared several
methods for determining NH4

+ in water. In 2014, Šraj et al. [8]
published an overview of flow-based methods for determining
NH3 in estuarine and marine water. Ma et al. [9] summarized and
discussed methods for determining NH4

+ at nanomolar concen-
trations in seawater. In 2017, Krishnan et al. [13] assessed biosensor
approaches for determining exhaled NH3. Kwak et al. [14] recently
reviewed techniques for determining NH3 in the gas phase. Other
reviews have been published focused on methods for determining
NH4

+ using ion-selective membrane electrodes for in situ
environmental analysis [15] and electronic sensors for determin-
ing nutrients [16]. When this paper was being prepared, three
reviews of NH4

+ analysis methods have been published. Zhu et al.
[17] focused on methods for seawater. Lin et al. [18] discussed
progress between 2014 and mid-2019. Li et al. [19] reviewed
methods for determining NH4

+-N in water, including optical
detection, electrochemical detection, and biological enzyme
detection methods. To the best of our knowledge, separation
methods used when determining NH4

+ in water have not
previously been reviewed. Here, a wide range of separation
methods used when determining NH4

+ in environmental water
samples are reviewed. Progress in relevant analytical methods over
the last 5 y are also discussed.

2. Chromatographic and electrophoretic methods

It is not common to separate NH4
+ from matrix components by

reversed-phase high-performance liquid chromatography (HPLC)
or gas chromatography (GC) because optical detectors used with
HPLC and mass spectrometers used with GC are not sensitive
enough to determine underivatized NH4

+ in water samples.
Therefore, a derivatization step is often used to convert NH4

+ into
a form suitable for analysis by HPLC or GC. In HPLC methods, NH4

+

is normally derivatized with o-phthalaldehyde (OPA) to give an
intensely fluorescent isoindole [20,21]. In GC mass spectrometry
methods, an alkyl chloroformate (e.g., butyl chloroformate) is used
to convert NH4

+ into a higher molecular mass derivative [22–24].
Sometimes, derivatization is followed by solid-phase micro-
extraction to make GC analysis more sensitive [23,24]. Derivatiza-
tion improves the sensitivity but makes water analysis
complicated, so is not generally applicable.

2.1. Ion chromatography

An advantage of determining NH4
+ by IC is that other amines in

a sample can be determined separately but simultaneously. In IC,
NH4

+ is separated either through ion exchange or ion exclusion
[25], but most commonly through ion exchange [26]. NH4

+ can be
separated from alkali and alkaline earth cations more effectively
using modified cation-exchange resins or new materials than using
common resins [27–29]. Suppressed conductivity [30] and non-
suppressed conductivity [31] conductometry methods have been
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used. In suppressed conductivity conductometry, the suppressor
partly converts NH4

+ into NH3, giving a non-linear response [32]
that may require a polynomial fitting curve. High sensitivity or
simultaneous determination of all inorganic nitrogen species can
be achieved using post-column derivatization [33–35] and indirect
detection [36].

NH4
+ is retained in a very similar way to Na+ by cation-exchange

columns. Na+ is a major ion in natural water, and the Na+

concentration can be hundreds to thousands of times higher than
the NH4

+ concentration. Na+ can therefore strongly interfere with
NH4

+ in most chromatographic separations. The ability of IC to
handle high-ionic-strength samples can be improved by using a
high-capacity ion-exchange column [37], adding an 18-crown-6
ether into the eluent [38], using a new resin containing a crown
ether group [39,40], or using the column switching approach
[41,42]. NH4

+ and amines in saline water can effectively be
determined by introducing an additional separation step, such as a
purge-and-trap step [43] or gas-diffusion step [44,45], before
sample injection. In 2017, Ferreira et al. [46] extracted NH4

+ and
low-molecular-mass amines from saline water using an ultra-
sound-assisted purge-and-trap device before performing IC. The
method tolerated Na+ and K+ concentrations up to 56,000 and
24,000 times. In 2016, researchers in the same group proposed that
NH4

+ and amines could be separated from a sample by steam
distillation [47].

Kurzyca et al. [35] used an anion-exchange column to separate
NH4

+ (which was not retained) from nitrite and nitrate (which
were separated) in saline water. NH4

+ was detected using a post-
column reaction using the Nessler reagent, and nitrite and nitrate
were directly detected by measuring UV absorption at �205 nm.
Liu and Yu [36] described a UV detection method for indirectly
determining NH4

+ in which an imidazolium ionic liquid acted as an
UV absorption reagent and the IC eluent. NH4

+ was separated and
detected within 13 min with a limit of detection (LOD) of
0.06 mg L�1 (3.3 mmol L�1).

2.2. Electrophoretic separation

Electrophoretic methods, including capillary and microchip
electrophoresis [48,49], have been used to determine NH4

+. NH4
+

has been determined using almost all electrophoretic separation
modes, including capillary zone electrophoresis [50], electro-
chromatography [51], and isotachophoresis [52–54]. Electropho-
resis-based methods give a high separation efficiency, but
capillary and micro-channel electrophoresis methods are not
very sensitive. NH4

+ does not strongly absorb UV wavelengths
>205 nm, so indirect spectrometry was used in most early studies
[55–58]. NH3 absorbs UV at 200 nm because an electron can be
transferred from an n-orbital to a s*-orbital. Direct UV detection
can therefore be achieved using an alkaline background electro-
lyte (pH 10) to convert NH4

+ into NH3 [59]. The difficulties
involved in using absorption detection methods have led to C4D
methods being used most often in recent years [60]. NH4

+ and K+

are not easily separated in an acidic buffer because they will have
very similar electrophoretic mobilities. Additives such as 18-
crown-6 can be added to the buffer to complex with and decrease
the mobility of K+, to improve the separation of NH4

+ and K+

[61,62].
Capillary and microchip electrophoretic methods have recently

been used in field monitoring studies. The systems used in these
methods include both microchip and capillary-based devices and
use both manual and automated injection systems. Most field
capillary electrophoresis systems were not designed specifically
for NH4

+ analyses, so we will not describe them in detail here.
Field-deployable and portable electrophoresis instruments have
been reviewed previously [63,64].
3. Non-chromatographic separation methods

Non-chromatographic separation methods for determining
NH4

+ can be divided into two categories. One contains methods
involving extracting NH4

+ derivatives that can be determined using
an optical detection method. The other contains methods involving
volatilizing NH3 and then removing the NH3 from the sample
matrix. Non-chromatographic methods combined with flow-
analysis techniques can be automated and used in the field or in
situ [8,65]. Devices using passive sampling or paper-fluid
techniques have been developed to allow low-cost field analyses
to be performed.

3.1. Liquid-liquid and liquid-solid extraction

The main aim of using extraction techniques when analyzing
NH4

+ is to improve the sensitivity of the detection method. NH4
+

concentrations in seawater, particularly open ocean water, are low
(nanomoles per liter). Traditional indophenol blue (IPB) methods
are not sensitive enough to determine NH4

+ at such concentrations,
so samples have been subjected to liquid-liquid extraction [66],
liquid-phase microextraction [67], solid-phase extraction (SPE)
[68–70], and cloud-point extraction [71]. IPB or ion-paired IPB
compounds were extracted using organic solvents and the extracts
analyzed spectrophotometrically in early methods [66]. However,
liquid-liquid extraction using solvent is harmful to the environ-
ment and difficult to automate. Liquid-liquid extractions have
therefore been replaced with liquid-phase microextraction [67]
and SPE [68], which use less solvent and are more readily
automated. Some sample pretreatment techniques (e.g., solvent
bar microextraction) can also be used. Badiee et al. [72] described a
revolving solvent bar microextraction device consisting of four
hollow fibers containing 1-octanol (the acceptor phase) to extract
IPB and cationic surfactant ion pairs. The method gave a
preconcentration factor of 372 and a LOD of 4.5 mg L�1

(0.26 mmol L�1).
Zhu et al. [73] described a flow-batch system for determining

NH4
+ in seawater on a ship and found LODs as low as 0.7 nmol L�1.

The method involved using a SPE column to enrich a fluorescent
compound formed through an OPA-sulfite-NH4

+ reaction, then
online elution and fluorometric detection. Reagent blanks for the
method were quantified and interferences caused by amines and
amino acids that can be present in seawater were investigated in a
later study [74]. The mean NH4

+ concentration in the reagent blank
was 6.7 � 1.5 nmol L�1, which was a maximum of 27 % of
background NH4

+ concentrations in seawater samples from
oligotrophic parts of the ocean. The method was very specific
and could be performed on a ship. A method involving SPE
preconcentration was used to prepare NH4

+-free seawater for use
as a carrier for flow analysis or as a matrix for standards [75].

3.2. Membrane-based separation methods

Being volatile, NH3 can be isolated from a sample matrix using a
gas-diffusion device made by sandwiching a gas-permeable
membrane between a donor phase and an acceptor phase. A
hydrophobic porous membrane such as polytetrafluoroethylene
(PTFE) is used to prevent water and ions from passing through and
to provide a large active membrane area and a short diffusion path
to ensure that effective mass transfer can occur between the donor
and acceptor phases. Membrane-based devices are compatible
with flow-through analysis systems [76,77]. Systems involving gas
diffusion devices and flow analysis that have been used to
determine NH4

+ are summarized in Table 1.
The NH3 in the acceptor phase after membrane separation has

been conducted can be determined after being subjected to classic



Table 1
Summary of flow-through analysis system with membrane-based gas diffusion device for the determination of NH4

+/NH3.

Flow-through
techniques

Separation device or membrane Detection method LOD Linear range RSD Sample
throughput

Sample Reference

Flow injection Microporous Spectrophotometry
(Nessler’s reagent)

– – – 70 h�1 – van Der
Linden
[78]

PTFE membrane or microporous
polypropylene film (celgard 2500)

Continuous flow Microporous Fluorescence (OPA) 0.018mmol L�1 0.2–200mmol L�1 4.4% (1mmol L�1) 10 h�1 River samples Aoki et al.
[79]2.1 % (10mmol L�1)

PTFE membrane 1.8 % (100mmol L�1)
(n = 5)

Flow injection PTFE tape with a thickness of 45mm Spectrophotometry
(bromothymol blue)

1mmol L�1 1 - 100mmol L�1 3% (10mmol L�1) 100 h�1 Canal water van Son
et al. [80]

Flow injection PTFE (0.076mm thick with either a 0.2
or 0.45mm pore size) non-laminated
Gore-Tex1 hydrophobic

Spectrophotometry
(phenol red)

0.05mmol L�1 <100mmol L�1 < 2% (2mmol L�1,
n = 28)

60 h�1 (5min for
five successive
measurements).

Seawater and crab
excretion

Willason
and
Johnson
[81]

Flow injection Microporous hydrophobic PTFE
membrane (0.45mm pore size)

Fluorescence (OPA) 1.5 nmol L�1 To at least 2mmol
L�1

< 1.8 % (n = 12) < 30 h�1 Freshwater, salt
water and
interstitial waters

Jones [82]

Flow injection PTFE gas-permeable membrane Conductometry (HCl as
receiving solution)

0.1mmol L�1 0.1–100mmol L�1 3.9% (5mmol L�1) 60 h�1 Fresh water And salt
water

Hall and
Aller [83]1.7 % (10mmol L�1)

1.4 % (50mmol L�1)
Flow injection Gas-diffusion cell (diffusion

path = 240mm� 1.5mm).
Spectrophotometry
(bromothymol blue, pH
indicator)

17 0 - 5000 0.7% - 2.1 % (n = 6) – River water Clinch
et al. [84]mg L�1 mg L�1

NH3-N NH3-N
Sequential
injection

Celgard 2400 hydrophobic membrane Spectrophotometric
(Berthelot reaction and BTB
pH indicators)

– 0.05–350mmol L�1 5% - 7%
(pH indicators)

– Yeast fermentation
medium

Lukkari
et al. [85]

Flow injection PTFE tape (width = 22mm,
thickness = 8�9mm)

Spectrophotometry
(bromothymol blue, pH
indicator)

0.6mg L�1, NH3-N 1 - 100 3.4% (2mg L�1NH3-N) 28min (6
injection)

Industrial liquid
effluents.

Andrew
et al. [86]mg L�1 0.7% (80mg L�1 NH3-

N) (n = 10)NH3-N
Flow injection Four types of membranes: Spectrophotometric

(Berthelot reaction,
Salicylate method and BTB
pH indicators) and
conductometric (deionized
water and boric acid)

0.03 – 1 mg L�1 ＜ 60mg L�1 0.92% - 4% – Wastewater Cerdà et al.
[87]1, ordinary PTFE plumbing tape;

2, PVDF Durapore1 hydrophobic
membrane (modified polyvinylidene
fluoride, 0.22mm pore size)
3, Fluoropore1

(polytetrafluoroethylene with
polyethylene backing,0.2mm pore size)
from Millipore;
4, Celgard 2500 (polypropylene,
0.04mm pore size) from Celanese1 .

Flow injection PTFE tape (plumbers tape,
12mm� 0.075mm)

Fluorescence (OPA) 7 nmol L�1 > 4mmol L-1 5.7% 30 h�1 Estuary waters and
seawaters

Watson
et al. [88]

Flow injection PTFE plumbing tape Spectrophotometry
(bromothymol blue, pH
indicator)

9mg L�1 (continuous-flow) 20 – 160 mg
L�1(continuous-
flow)

3% (continuous-flow) 135 h�1

(continuous-
flow)

Estuarine waters Gray et al.
[89]

3mg L�1 (stopped-flow mode) 100 – 3000 mg L�1

(stopped-flow
mode)

2%(stopped-flow
mode)

60 h�1(stopped-
flow mode)

Multicommuted
flow injection

PVDF Spectrophotometry
(bromothymol blue, pH
indicator)

42mg L�1 50 - 1000mg L�1 < 1.5 % 20 h�1 Surface water
and tap water

Oliveira
et al. [90]Millipore Durapore1 hydrophobic

membrane (pore size of 0.45mm)
Multicommuted
flow injection

PVDF Spectrophotometry
(bromothymol blue, pH
indicator)

18mg L�1 50 - 1000mg L�1 < 2.0 % 20 h�1 Sea and estuarine
samples

Oliveira
et al. [91]Millipore Durapore1 hydrophobic

membrane (pore size of 0.45mm)
Semi-permeable PTFE membrane
(0.076mm Thickness)

– – – – – Kolev et al.
[92]
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Sequential
injection
analysis

Spectrophotometry
(bromocresol green, pH
indicator)

Pulsed flow by
micro-
solenoid
pumps

PTFE pipe tape Conductometry (HCl as
receiving solution)

0.2mmol L�1(estuarine and
coastal waters, in situ);
0.014mmol L�1 (shelf waters, in
situ);

< 18mmol L�1

(coastal waters)
2.5 %–6 % – Estuarine, coast,

shelf waters
Plant et al.
[93]

< 2mmol L�1 (shelf
waters)

Sequential
injection

PVDF Spectrophotometry
(bromothymol blue, pH
indicator)

27mg L�1 0.1 – 5 mg L�1 < 2% 23 h�1 Estuarine water and
sea water

Segundo
et al. [94]Durapore1 membrane filter

Multisyringe
injection

Hydrophilic Conductometry (HCl or
boric acid as receiving
solution)

45mg L�1 0.075–360mg L�1 < 2% 32 h�1 coastal seawater,
Pond water, aqueous
extracts of composts

Henríquez
et al. [95]PVDF membrane

Durapore1

(12mm� 75mm� 0.12mm)
Solenoid
micropump
system

The same as [95] Conductometry (H2SO4 as
receiving solution)

0.27mmol L�1 < 1% Coastal water and
drinking water

Henríquez
et al. [96]

Flow injection Four different types of membrane: Spectrophotometry (cresol
red and thymol blue, pH
indicators)

8mg kg�1 0.1–5mg kg�1 6% (0.1mg kg�1) 10 h�1 Solid building
materials

Timofeeva
et al. [97]1, PTFE plumber's tape (thickness �

0.2mm);
2% (5mg kg�1) (n = 5)

2, PTFE bonded to polyethylene support
(Fluoropore, Millipore, 0.2mm);
3, PVDF (SureVent, Millipore, 0.1mm);
4, PVDF (Durapore, Millipore, 0.22mm)

Programmable
flow analysis
system

SureVent1 super hydrophobic gas-
diffusion membrane (0.1mm pore size)

Spectrophotometry
(bromothymol blue, pH
indicator)

15, 88 and 440 nmol L�1 (with
sample volume of 2.0, 1.0, and
0.25mL)

0.028�5.6mmol L�1

(2.0mL sample)
0.71 %,1.2 % and 0.97 %
(2.0, 1.0 and 0.25mL
sample) (n = 10)

20, 30, 40 h�1

(2.0, 1.0, 0.25mL
sample)

Estuarine and
coastal seawaters

Šraj et al.
[98]

0.28�13.9mmol L�1

(1.0mL sample)
1.4–55.6mmol L�1

(0.25mL sample)
Flow injection A commercial unit (Metrohm model

754)
Contactless conductivity
detection (H2SO4 as
receiving solution)

1.85mmol L�1 2 - 30mmol L�1 < 3.8 % (n = 20) 20 h�1 Tap waters, river
waters, and marine
waters

Chaneam
et al. [99]

Flow injection PTFE gas-permeable membrane
(47mm i.d. with pore size 0.45mm)

Spectrophotometry (orchid
extract, pH indicator)

2.12 mmol L�1 (for high level
NH4

+)
5 – 40 mmol L�1 (for
high level NH4

+)
0.48 % (20mmol L�1) 48 h�1 (for high

level NH4
+)

Wastewater and
fertiliser

Sukaram
et al. [100]

0.76mmol L�1 (for low level
NH4

+)
1 – 5 mmol L�1 (for
low level NH4

+)
2.29 % (3mmol L�1)
(n = 10)

15 h�1 (for low
level NH4

+)
Flow through
technique

PTFE Millipore membrane (Fluoropore,
0.22mm, ø = 47mm,
thickness = 150mm, porosity = 85 %,
white, plain)

Conductometry (boric acid
as receiving solution)

10.2mg L�1 10.2mg L�1 -
500mg L�1

< 1.71 % �54 h�1 Wastewater
treatment process

Li et al.
[101]
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IPB or OPA reactions. In 2014, Kodama et al. [102] described a
membrane-separation continuous-flow system using a liquid
waveguide capillary cell with a 1 m path length for determining
NH4

+ in seawater. The system had a LOD of 5.5 � 1.8 nmol L�1 and
was linear up to 2000 nmol L�1 when the detection wavelength
was 630 nm and had a LOD of 13 � 5.3 nmol L�1 and was linear up
to at least 10,000 nmol L�1 when the detection wavelength was
530 nm. In 2018, Müller et al. [103] described an NH4

+-selective
fluoroionophore dye that could form a complex with NH4

+ that
fluoresced more strongly that the uncomplexed dye. The dye was
mixed with an internal buffer and embedded in a hydrophilic
polymer, then the polymer was covered with a PTFE membrane, as
shown in Fig. 3. The dye had a connecting crown ether group, the
cavity of which allowed only NH4

+ to pass through. This method
was satisfactorily selective for NH4

+ and was insensitive to other
amines.

Methods for analyzing NH4
+ involving reactions with IPB or OPA

are very selective and sensitive but are time-consuming and
complicated. The pH or conductivity can be used to indicate the
NH4

+ concentration if a high degree of sensitivity is not required.
For example, an NH3 gas sensor with a glass pH electrode in the
acceptor phase has been used widely [104,105]. However, sensors
using pH electrodes are not suitable for field monitoring natrual
waters due to a lack of sensitivity. Methods involving spectropho-
tometric measurements of pH indicators in the acceptor phase
have been used in many applications (see Table 1). Chip-based
diffusion systems have also been developed. The first chip-based
gas-diffusion flow-injection analysis system was developed by Zhu
et al. [106] using microfabricated electroosmotic pumps to
transport the solutions. The system gave a LOD of 0.10 mg L�1

(5.9 mmol L�1) and a relative standard deviation <5 % at an NH3

concentration of 4.0 mg L�1. Šraj et al. [98] described an
environmentally benign flow-through system for determining
NH4

+ in seawater. The system gave a LOD as low as 15 nmol L�1. The
reagents, including pH indicators, were inexpensive, non-toxic,
and stored well.

The conductivities (s) before and after NH3 enters the acceptor
phase can be used to indicate the NH3 concentration. Strong or
weak acids can be used in such a system. If a strong acid is used, the
chemical reaction in the acceptor phase is

Hþ þ NH3!NHþ
4 ð1Þ
Fig. 3. Concepts of optical NH3 sensing. a: Diffusion of NH3 into a hydrophobic or hyd
Additional incorporation of a neutral ionophore (L) that is able to selectively complex an
concept based on an ion selective fluoroionophore embedded in a hydrophilic mat
fluoroionophore. Reproduced from [103] with permission of Elsevier.
If excess acid is present in the acceptor phase, Ds is given by

Ds ¼ kCNHþ
4
ðlNHþ

4
� lHþ Þ ð2Þ

where CNHþ
4
is the sorbed NH3 concentration, lNHþ

4
and lHþ are the

equivalent ionic conductances of NH4
+ and H+, respectively, in

solution, and k is a constant dependent on the conductivity
detector properties. In a dilute solution, lNHþ

4
and lHþ will be close

to the limiting equivalent ionic conductances (l1
NHþ

4
and l1

Hþ ,

respectively). lNHþ
4

and lHþ are markedly different

(l1
NHþ

4
¼ 73:5 S cm2 equivalent�1 and

l1
Hþ ¼ 349:82 S cm2 equivalent�1) [105], and Ds will be negative

because lNHþ
4
< lHþ .

The high l1
Hþ value means a strong acid (which will give a high

background conductivity) could give high baseline noise. The
background conductivity is generally kept acceptable by using an
acid concentration in the tens of micromoles per liter, which is
close to the measured NH3 concentration. The strong acid in the
acceptor phase therefore needs renewing for each analytical cycle
to prevent it becoming exhausted.

Using boric acid (to give low background conductivity) in the
acceptor phase causes the reaction in the acceptor phase to be

H3BO3 þ NH3!B OHð Þ�4þNHþ
4 ð3Þ

and Ds to be

Ds ¼ kCNHþ
4
ðlNHþ

4
þ lB OHð Þ�4 Þ ð4Þ

meaning Ds is directly proportional to [NH4
+] and will be positive.

A field analysis device with an acceptor solution not needing
renewing was developed by Li et al. [107] using a solution with a
high boric acid concentration (0.5 mol L�1) to sorb NH3. The system
can determine the NH3 concentration in real time using the
conductivity profile derivative, then the NH3 concentration,
temperature, and pH can be used to determine the NH4

+

concentration in the water sample (the donor) with a high degree
of resolution. In 2018, Chaneam et al. [99] described a flow
injection system for simultaneously determining the salinity,
carbonate and NH4

+ concentrations. A commercial gas diffusion
unit with a circular PTFE membrane was used, and the acceptor
solution was pure water. One advantage of the system was the use
rophilic matrix causes deprotonation of the immobilized pH indicator (IndH). b:
d stabilize the formed NH4

+ for higher selectivity and sensitivity. c: The new sensing
rix and additional internal buffer. d: Chemical structure of the NH4

+-selective
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of the contactless conductivity detection technique, meaning
electrode contamination and fouling were avoided. The NH4

+ LOD
was 1.85 mmol L�1, the throughput was 20 samples h�1, and the
relative standard deviation was <3.8 %.

3.3. Liquid-gas-liquid methods

The Kjeldahl method, in which NH3 is distilled into a boric acid
solution, is the classical liquid-gas-liquid separation method for
analyzing NH3. The Kjeldahl method is not as popular as
membrane gas diffusion methods in systems used in research
studies. Membrane-based gas diffusion gives effective mass
transfer of NH3 and allows automated flow-through detection to
be achieved. However, the membrane may become clogged with
particles or suffer biofouling, so regular maintenance is required.
The membranes used are not compatible with organic solvents,
surfactants, or high salinity samples, which cause leaks or short
membrane lifetimes. Membraneless gas-diffusion units for flow
analysis have therefore been developed [108–110].

Alahmad et al. [111] described a flow analysis system for
determining NH4

+ and sulfide. Vaporization and trapping were
achieved using a membraneless vaporization unit with two cone-
shaped reservoirs, one containing a donor phase and the other an
acceptor phase. Two different units were used to separate NH4

+

and sulfide. NH4
+ entering the acceptor changed the solution

conductivity, so could be detected using a contactless conductivity
detection system.

In 2018, Giakisikli and Anthemidis [112] described a pressure-
assisted dual-headspace microextraction technique. The entire
liquid-gas-liquid extraction and fluorometry process were per-
formed using a lab-in-syringe system with two syringe pumps and
four selection valves. A sample was placed in one syringe and the
acceptor solution in the other. The flexibility of the lab-in-syringe
system allowed negative or positive headspace pressure to be
generated using the pump to aspirate or dispense, respectively.
This and heating and stirring the donor phase gave very efficient
mass transfer between the phases. Micro-distillation of NH3 and
then dissolution of the NH3 in a boric acid solution and analysis by
conductometry has been performed [113]. Purge-and-trap pre-
treatment then flow-injection fluorescence detection has been
used to determine NH3 in seawater [114]. This method was
negligibly affected by primary amines and amino acids.

The acceptor solution is not always directly exposed to the gas
phase. Valente et al. [115] introduced a method with a porous
hydrophobic membrane between the acceptor and gas phases to
avoid a sprayed sample entering the acceptor phase. A cylindrical
Fig. 4. Schematic representation of the syringe pump 1 and photographic images of a 

sample for head-space, (2) Aspiration of EDTA + NaOH, (3) Homogenization, starting e
Creation of a reagent drop, (5) Absorbance measurement, (6) Discharge of the syringe 
PTFE module with a membrane at the bottom was used to contain a
solution containing fluorometric reagents (OPA and Na2SO3).
Headspace microextraction was performed using a standard
250 mL glass flask with a screw cap with a hole in. The cylindrical
module was placed next to the hole in the cap to allow NH3 to
diffuse through the membrane into the acceptor solution.

A liquid drop method has been used to extract NH3 from air
samples or the headspaces of water samples since the 1990s by
Dasgupta’s group [116]. A change in the pH or conductivity of the
drop is used to determine the NH4

+/NH3 concentration following
the principle described in Section 3.2. In the first system that was
developed [116], the exposed drop was withdrawn and analyzed in
a flow-through absorption cell. The sample throughput was
increased and carry-over effects decreased by performing on-
drop detection in 1996 [117]. In 2015, Jaikang et al. [118] described
an on-drop conductometry method for determining NH4

+ in water
samples. First, NH4

+ in a sample was converted into NH3 by adding
a strong basic solution, then the sample was purged with nitrogen.
A drop containing sulfuric acid in contact with a conductivity probe
was used to extract NH3 from the nitrogen. The rate at which the
conductivity decreased was proportional to the NH4

+ concentra-
tion in the sample. Šrámková et al. [119] described a single-drop
headspace extraction and on-drop photometric sensing method. A
modified laboratory-in-syringe system was used to automatically
perform the microextraction and detection procedures. A photo-
metric detector containing light emitting diodes and fiber optics
was placed outside the syringe to allow on-drop sensing (Fig. 4).
The method had a relative standard deviation of 6%, a linear range
up to 25 mmol L�1, and a LOD of 1.8 mmol L�1.

Silver nanoclusters functionalized with citrate and glutathione
are sensitive to changes in pH. A pH increase decreases the
fluorescence intensity and absorbance [120]. A microextraction
method has been developed in which a drop containing silver
nanoclusters suspended on the cap of a centrifuge tube extracts
NH3 from the headspace of a sample and the NH4

+ concentration in
the original water sample is determined by analyzing the drop by
fluorometry or UV/visible spectrometry [120]. The method was
linear up to 350 mmol L�1 and had a LOD of 336 nmol L�1.

Microextraction of NH3 has also been achieved using a liquid
film with a high surface-area-to-volume ratio. In an early study
[121], a liquid film containing sulfuric acid was used to extract NH3

from breath, and the NH4
+ concentration in the film was

determined by conductometry. Fu and Zhang [122] introduced a
method in which NH3 was extracted using a black film 10�100 nm
thick. The liquid film contained the pH-sensitive dye carboxy-
seminaphthorhodafluor-1. NH3 was quantified by measuring the
reagent drop during the individual analytical operations: (1) Aspiration of air and
vaporation of NH3 and lowering the pressure to promote evaporation of NH3, (4)
content and the reagent drop. Reproduced from [119] with permission of Elsevier.



Fig. 5. (A) Schematic fabrication diagram of the proposed gas-diffusion mPAD (only a single set of sample and detection zones is shown). The diameters of zones 1 and 2 are 7
and 3 mm, respectively. (B) Photograph of the detection zone side of a bromothymol blue mPAD (left) and a 3-nitrophenol mPAD (right). Reprinted with permission from [127].
Copyright (2015) American Chemical Society (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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fluorescence of the dye, which was affected by the pH. Other
volatile compounds (e.g., acetic acid and formaldehyde) could be
determined using the same approach.

3.4. Other separation methods

Other separation methods, including gas-phase molecular
adsorption spectrometry, paper-fluid and passive sampling, are
summarized here. Isolated NH3 can be directly measured by gas-
phase molecular absorption spectrometry [123,124]. A method for
converting NH4

+ into N2 and determining the N2 concentration by
atmospheric-pressure glow-discharge microplasma molecular
emission spectrometry has been described [125].

Microfluidic paper-based analytical devices (mPADs) are cheap,
easy to use, suitable for use in the field or remote areas, and
environmentally benign [126]. mPADs can be analyzed by taking a
digital photograph with a mobile phone or even by the naked eye.
mPADs can therefore sometimes be used as completely instru-
ment-free assays. mPADs have been used with various separation
approaches to allow NH4

+ to be analyzed.
In 2015, Jayawardane et al. used a gas-diffusion separation step

in a mPAD fabricated by combining layers of several different
materials (Fig. 5) [127]. The mPAD contained a Teflon membrane
sandwiched between two filter papers. A sample and pH indicator
were loaded onto each filter paper in a defined hydrophilic zone
created by surrounding the zone with a hydrophobic agent. The
paper and membrane were laminated between two films to
maintain the patterned paper alignment and prevent the indicator
solution evaporating. A change in indicator color was identified by
scanning the mPAD using a desktop scanner. Two indicators, 3-
nitrophenol and bromothymol blue, were used, and they had LODs
expressed as the concentration of N of 0.8 and 1.8 mg L�1,
respectively (equivalent to 0.06 and 0.13 mmol L�1, respectively).

In 2016, Phansi et al. [128] described a membraneless gas-
separation mPAD in which, instead of a hydrophobic membrane, a
0.8 mm spacer layer (two-sided mounting tape) was sandwiched
between the donor and acceptor layers. A small hole in the spacer
layer allowed gas to diffuse through. The mPAD was used to
determine NH4

+ in wastewater and fertilizer. In 2019, Peters et al.
[129] developed a more sensitive mPAD for analyzing freshwater.
The device performed membraneless micro-distillation. The
device consisted of two layers of paper with circular hydrophilic
zones. The hydrophilic zone on one layer was impregnated with
NaOH to act as a donor, and the hydrophilic zone on the other layer
was impregnated with a pH indicator to act as an acceptor. The
mPAD with a m-distillation chamber was twice as sensitive as a
mPAD with a gas-permeable membrane.

Other methods involving filter papers impregnated with
reagents used to extract NH3 from a sample headspace have been
described [130,131]. However, these were not strictly paper-fluid
methods. The immobilized reagents included modified Berthelot’s
reagents [130] and butterfly pea flower extract (a pH indicator)
[131].

Passive sampling techniques, which are used widely for
environmental analyses, have also been used to analyze NH4

+

and NH3 [132,133]. A passive sampler separates and enriches the
analytes of interest from a sample matrix during the deployment
period to give a time-weighted average concentration. NH4

+ or NH3

can be passively sampled from environmental water in two main
ways, using a cation-exchange membrane or film to remove NH4

+

[134–137] and using a hydrophobic membrane to remove NH3

[138].
Huang et al. [134] developed a passive sampler based on the

diffusive gradient in a thin film technique to determine NH4
+ in

freshwater. The diffusion layer contained agarose and polyacryl-
amide hydrogels, which allowed NH4

+ to pass through. The binding
gel layer was agarose gel containing Microlite PrCH cation-
exchange resin, which has a high NH4

+ binding capacity. Passive
samplers were deployed in the field, and the results obtained using
the new samples and by analyzing spot samples agreed well. The
method was improved by adding another resin (A520E resin for
sorbing nitrate) to the binding layer and adding another binding
layer (a Metsorb layer for sorbing phosphate) to allow NH4

+,
nitrate, and phosphate to be analyzed simultaneously by the
passive sampler [135].

Almeida et al. [136,137] prepared a polymer inclusion
membrane (PIM) using dinonylnaphthalene sulfonic acid as a
carrier, poly(vinyl chloride) as a base polymer, and 1-tetradecanol
as a modifier. PIM is a cation exchanger, and formed a semi-
permeable barrier between the sample matrix and the receiving
solution (HCl). NH4

+ was extracted and transported through the
PIM into the receiving solution. The PIM-based passive sampler
was deployed in the field for 7 d, and the results strongly correlated
with spot sampling results.

Ion-exchange-based passive samplers are not suitable for
monitoring NH4

+ in marine water. Alkali and alkaline earth metal
cations are found at concentrations several orders of magnitude
higher than NH4

+ concentrations in marine water, so seriously
interfere with ion-exchange of NH4

+. A gas-diffusion-based passive
sampler was therefore developed [138]. The sampler has porous
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and hydrophobic membranes and can extract dissolved NH3 from
high ionic strength natural water.

4. Conclusions and perspectives

Analytical separation techniques have been used widely to
determine NH3/NH4

+ in environmental water. Chromatographic
methods can separate NH3/NH4

+ from amines, which can interfere
with NH4

+ determination using direct derivatization methods.
However, chromatographic instruments are expensive and com-
plex, and are therefore often unsuitable for field use. Non-
chromatographic methods are more readily used in the field. Flow-
through analysis methods are suitable for in situ or field use but
cannot be deployed unattended for extended periods because they
require electricity and because of the reagent and pump tubing
lifetimes. Other instrument-free devices such as mPADs and
passive samplers have been developed that are cheap, easy to
use, environmentally benign, and suitable for use in remote areas.

Several challenges to determining NH4
+/NH3 need to be

overcome. (1) Contamination. There is a strong risk of sample
contamination and/or loss of analytes during sample collection,
transfer, and storage. The NH4

+ concentration may be affected by
bioactivity in the sample, contamination by the atmosphere or the
breath of the operator, or loss to the air when a frozen sample is
thawed. (2) Sensitivity. In chromatographic methods, the sample
injection volume is a balance between the sensitivity and
separation efficiency. Mass transfer from the sample phase to
the acceptor phase limits the sensitivity of a non-chromatographic
method. (3) Matrix effects. Some separation methods, particularly
chromatographic methods, are difficult to directly apply to very
saline water. Coupling such methods to other separation process
(e.g., gas diffusion or SPE) improves saline sample analysis.

Despite these challenges, there is great promise for the use of
separation techniques when determining NH3/NH4

+. A method
suitable for the requirements of the given monitoring task, the
analyte concentrations, and the sample matrix should be selected.
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